Maintenance of Normal Stress Tolerance in the Moss Physcomitrella patens Lacking Chloroplastic CuZn-Superoxide Dismutase

نویسندگان

  • Yuya Higashi
  • Katsuaki Takechi
  • Hiroyoshi Takano
  • Susumu Takio
چکیده

Superoxide dismutases (SODs) catalyze the dismutation of superoxide and play an important role in reducing oxidative stress in plants. Based on in-gel SOD activity staining, chloroplasts of the moss Physcomitrella patens have two CuZn-SODs as the major SOD isozymes and minor SODs, including a Fe-SOD and two Mn-SODs. To investigate the contribution of chloroplastic SODs to stress tolerance in P. patens, we generated a double mutant lacking chloroplastic CuZn-SOD genes. The mutant did not show any differences in comparison to the wild type based on the growth of protonemata on normal and high-salt media, extractable activities of the other SODs after culture on normal and high-salt media, and inhibition of Fv/Fm under stress conditions (high-salt, high-light, and high-temperature). These results indicate that chloroplastic CuZn-SODs do not play a principal role in oxidative stress tolerance in chloroplasts under the investigated conditions. These findings explain the previously reported unusual response of P. patens to copper deficiency, in which chloroplastic CuZn-SODs are preferentially inactivated but cytosolic CuZn-SODs are unaffected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of microRNA in copper deficiency-induced repression of chloroplastic CuZn-superoxide dismutase genes in the moss Physcomitrella patens.

Superoxide dismutases (SODs) are metallo-enzymes that catalyze the dismutation of superoxide radicals. In Arabidopsis thaliana, the expression of CuZn-SOD in both the chloroplast and cytosol was reported to be down-regulated by microRNA398 (miR398) during growth on low copper. The moss Physcomitrella patens contains chloroplastic and cytosolic CuZn-SOD genes, but lacks miR398. From analysis of ...

متن کامل

Sequence analysis of expressed sequence tags from an ABA-treated cDNA library identifies stress response genes in the moss Physcomitrella patens.

Partial cDNA sequencing was used to obtain 169 expressed sequence tags (ESTs) in the moss, Physcomitrella patens. The source of ESTs was a random cDNA library constructed from 7 day-old protonemata following treatment with 10(-4) M abscisic acid (ABA). Analysis of the ESTs identified 69% with homology to known sequences, 61% of which had significant homology to sequences of plant origin. More i...

متن کامل

Physcomitrella Patens Dehydrins (PpDHNA and PpDHNC) Confer Salinity and Drought Tolerance to Transgenic Arabidopsis Plants

Dehydrins (DHNs) as a member of late-embryogenesis-abundant (LEA) proteins are involved in plant abiotic stress tolerance. Two dehydrins PpDHNA and PpDHNC were previously characterized from the moss Physcomitrella patens, which has been suggested to be an ideal model plant to study stress tolerance due to its adaptability to extreme environment. In this study, functions of these two genes were ...

متن کامل

Heterologous expression and biochemical characterization of a highly active and stable chloroplastic CuZn-superoxide dismutase from Pisum sativum

BACKGROUND CuZn-Superoxide dismutase (SOD) is a unique enzyme, which can catalyzes the dismutation of inevitable metabolic product i.e.; superoxide anion into molecular oxygen and hydrogen peroxide. The enzyme has gained wide interest in pharmaceutical industries due to its highly acclaimed antioxidative properties. The recombinant expression of this protein in its enzymatically active and stab...

متن کامل

Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts.

The present work describes the intrachloroplast localization and the changes that took place in the thylakoid and stroma-located superoxide dismutases (SOD, EC 1.15.1.1) and ascorbate peroxidases (APX, EC 1.11.1.11), in response to long-term NaCl stress in Pisum sativum L. cv. Puget plants. Native PAGE using high chloroplast protein concentrations pointed to the presence of the two main Fe-SODs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015